بررسی زیر رده ای از توابع تقریبا محدب

پایان نامه
چکیده

تابع یک به یک را تک ارز می نامند از نظر تحلیلی تابع تک ارز مشتق مخالف صفر دارد واز نظر هندسی تابع تک ارز خم های ساده را به خم های ساده می نگارد.در این پایان نامه به بررسی زیر رده های از رده ی توابع تقریبا محدب که به عنوان زیر رده ی از توابع تک ارز است می پردازیم. در این راستا فصل اول به بیان تعاریف وقضایایی اختصاص داده شده است که در فصول بعد مورد نیاز است فصل دوم به معرفی زیر رده ای از رده ی توابع تقریبا محدب اختصاص یافته است. و ما در فصل سوم دو زیر رده ی جدید را معرفی می کنیم و قضایایی را بیان و اثبات می کنیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

توابع تقریبا محدب و عملگرهای تقریبا یکنوا

مشتق پذیری یکی از خاصیت های مهم توابع می باشد. با توجه به این که در کاربردها بسیاری از توابع مورد استفاده فاقد ین خاصیت می باشند مفهوم جامع تری بنام زیرمشتق تعریف شده است. ابتدا تعریف زیرمشتق را بیان می کنیم و به توصیف توابع ck- پایینی می پردازیم و رابطه بین توابع -c1 پایینی و c2-پایینی را با استفاده از زیرمشتق مورد بررسی قرار می دهیم. به تعریف توابع تقریبا محدب می پردازیم و ثابت می کنیم...

15 صفحه اول

توابع تقریبا" محدب روی گروه های توپولوژیک

در این پایان نامه توابع تقریبا" محدب را روی گروههای توپولوژیک مطالعه خواهیم کرد. همچنین قضایای ینسن، برنشتاین - دوچ، استروفسکی ، بلومبرگ - سیرپنسکی و مهدی را روی توابع تقریبا" محدب مبانی در فضاهای برداری توپولوژیک به توابع تقریبا" محدب مبانی در گروههای توپولوژیک تعمیم خواهیم داد. در نهایت ، توابع تقریبا" -wright محدب را در گروههای توپولوژیک تعریف کرده و قضیه ای را در مورد آن اثبات می کنیم.

15 صفحه اول

بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها

در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده‌ است. در پایان نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.

متن کامل

زیر رده ای از توابع ستاره گون با ضرایب منفی

در این پایان نامه به بیان تعاریف و قضایای مربوط به رده هایی از توابع ستاره گون k-تایی و توابع محدب k-تایی می پردازیم. همچنین با معرفی چند عملگر انتگرال برخی از خواص آنها را روی رده های مذبور مورد مطالعه قرار می دهیم و معیارهایی برای تک ارزی عملگرهای انتگرال روی توابع تحلیلی در دیسک یکه باز را بررسی می کنیم.

15 صفحه اول

خواص زیر رده هایی از توابع تحلیلی

اگر خانواده تمام توابعی مانند(f(z که در دایره واحد تحلیلی،تک ارز،0 =(f(z و 1= (f(z را با s نمایش دهیم آنگاه خانواده s دارای خواص و کاربردهای منحصربه فردی می باشد. در این پایان نامه برای شروع ، کرانهایی برای نرم اعضای s و مشتق آنها حاصل شده است . در ادامه با معرفی زیر کلاسهایی از خانواده s مانند توابع ستاره گون ، ستاره گون از مرتبه a ،محدب ، محدب از مرتبه a،ستاره گون قوی ، ستاره گون قوی از مرتب...

رده بندی توابع محدب با استفاده از نامساوی هرمیت-هادامارد

توابع محدب یکی از مهمترین توابع در ریاضیات می باشند.رده بندی این نوع توابع اهمیت ویژه ای دارد و ریاضیدانان زیادی در این زمینه مشغول به مطالعه و تحقیق هستند.در این رساله ابتدا تعاریف و قضایای مقدماتی مطرح می شود.سپس به رده بندی توابع یک متغیره ی محدب روی بازه های باز با استفاده از نامساوی هرمیت هادامارد پرداخته می شود.در ادامه به رده بندی توابع چند متغیره ی محدب روی زیر مجموعه های rn می پردازیم.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023